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Abstract--Frictional heat always accompanies the friction process. It can be assumed that anisotropic 
friction induces anisotropic frictional heat for crystals, composites and materials with microstructure. 
Using a thermodynamical approach, a general method for deriving constitutive equations for frictional 
heat is pre,;ented. The directionality of frictional heat is described by a heat intensity function depending 
on the sliding direction. Symmetries and particular anisotropic heat directions are investigated. Examples 
illustrate different types of frictional heat anistropies. 

"L INTRODUCTION 

Tests carried out and everyday practice show that 
almost all the energy dissipated by friction between 
two bodies sliding one on another turns into frictional 
heat and wear. The heat generated at or very close to 
the contact raises the temperature at the contact area, 
and it is transferedL away into a bulk of rubbing bodies 
and into surroundings. There are two different tem- 
peratures relating to frictional heat : the average tem- 
perature of the sliding surfaces and the "flash" tem- 
perature, which is generated at individual surface 
asperities as they pass in and out of contact. Small 
areas of localized asperity contacts and a short work 
time make the heat supplied to the bodies from the 
microcontacts very small. 

Temperatures of rubbing surfaces can be measured 
in a number of ways : with thermocouples, by infrared 
thermography, by use of temperature-sensitive coat- 
ings, etc. Measurements of the contact temperature 
have been carried out by many researches [1-5]. 

Theoretical investigations of contact thermo- 
mechanical problems were devoted mostly to contact 
temperature studies. There have been numerous 
attempts to estimate the temperature of sliding 
surfaces, e.g. Blok [6], Jaeger [7], Ling [8], Kennedy 
[9], Barber and Comninou [10] and others [11-13]. 
To this end, an a,dequate heat conduction problem 
was solved, using the methods heat source, integral 
transformation and finite elements. Several methods 
based on empirical relations and simplified theoretical 
assumptions were proposed for calculating the flash 
and average temperatures. In refs. [14-21] are given 
some of the most representative ones. 

A heat flux at the contact zone is the sum of the 
frictional heat and the heat conducted from one body 

to another. Usually, constitutive relations for the con- 
ductive heat are based on observations that the heat 
flux across the contact depends on a temperature dis- 
continuity. A constant of the constitutive relation, i.e. 
thermal contact conductance, is a function of pressure 
and microdeformations [10, 22]. Nonhomogeneous 
heat transfer across the contact and frictional heat can 
induce a change of the contact geometry (so-called 
thermoelastic instability of the contact) [10, 23, 24]. 
Another investigated problem is devoted to division 
(partitioning) of the frictional heat between the sliding 
members [25]. A directional dependence of the fric- 
tionally-generated surface temperature has been 
measured for composites. The referenced studies [1-25] 
cover all investigated problems within the frictional 
heat physics. 

The field of temperature induced by friction is not 
an additional effect accompanying the friction 
process, but inseparable behaviour of this phenom- 
enon. It can be presumed that anisotropic friction 
induces anisotropic heat generation, i.e. the intensity 
of the generated heat depends on the sliding direction. 
Anisotropy of friction results from roughness ani- 
sotropy of contacting surfaces and anisotropy of 
mechanical properties of composites, fibre-reinforced 
materials and crystals. 

The contact of bodies represents an irreversible 
thermomechanical process. Unremovable changes 
(heating, abrasion, etc.) occur in the rubbing bodies, 
and supplied external work cannot be recovered by a 
simple change of the contact process direction to the 
opposite one. Therefore, each theoretical approach 
for the description of the contact phenomena has to be 
based on thermodynamical considerations. We believe 
that this subject may be studied and understood at 
different levels of generalization. The purpose of this 
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NOMENCLATURE 

contacting bodies 
specific heat 
couple of friction forces at the 
layer S 
friction tensors 
contact area 
pin circumference 
groups of symmetry 

heat transfer coefficient 
mirror reflection transformations 
thermal conductivity XA' XB 
thermal diffusivity z 
particle at the layer S 
mass of the material point 
constant parameters in 
constitutive equations 

outward normal vectors with 
respect to S + and S -  % 
normal pressure 
full orthogonal group fl 

frictional heat fluxes 

Vo,VoA,V B 

V AS , V BS 

vAs, vBs} 
WA, WB 

t 
WAB, W k J  

XA, XB~ XS 

Greek symbols 
~A ~xB 

~v, v ~ v 

frictional heat supplied to the flA, fin, fl* 
layer S 
radius vector of the material OA, OB, Os 
point 
space of real numbers 
orthogonal transformations /1~,/~± 
rotation transformation #~k) ) 
wearing surfaces 
wear product interfacial layer P 

~0 
friction forces 

X 
time 
temperatures ¢o 
Cauchy stress tensor 
material velocities of the bodies 
translational velocity of the 
layer particles 
unit vector of the sliding velocity 

Other symbols 
1 
--1 

unit vectors of reference 
directions at the contacting 
surfaces 

sliding velocities 

frictional heat intensities 

position vectors of particles of 
the bodies and the layer 
particles in the bodies A and B 
distance from the contact 
surface. 

angles between the sliding 
direction and the reference 
directions 
direction of the initial sliding 
velocity 
deviation angle of the anistropic 
friction force from the sliding 
direction 
energies spent on wear process 
of the bodies and the layer 
absolute temperatures of the 
bodies and the layer 
composition coefficient 

friction coefficients 

mass density 
angle of the relative position of 
the contacting surfaces 
rotation tensor of the layer 
particles 
rotational velocity of the layer 
particles. 

identity transformation 
central inversion transformation. 

paper is to make the first step towards the devel- 
opment of rational models of anisotropic frictional 
heat, and to investigate their properties. We develop 
equations which are both useful and physically sound. 

2. GENERAL AND SIMPLIFIED CONSTITUTIVE 
EQUATIONS FOR FRICTION AND FRICTIONAL 

HEAT 

In dry contact conditions solids rub and wear out 
(i.e. become abraded). The unintentional removal of 
solid material from rubbing surfaces, and the gen- 
eration and circulation of free debris, are main fea- 
tures of the wear process. The loose particles form a 

thin wear-product layer at the contact area. We 
assume that every particle of the layer can translate 
and rotate about its own axis. Let a system of two 
bodies A and B and the two-dimensional, interfacial 
layer S be a model of rubbing and wearing solids, 
Fig. 1. 

Analysing governing equations for the contacting 
bodies [26], the following dependent variables of the 
contact phenomena can be derived : friction force vec- 
tors between the bodies and the layer (tAs, tss), and 
fluxes of the frictional heat supplied to the bodies, 

q~" n + = q f  q~." n -  = qrs. (I) 

Here, we neglect dependent variables related to the 
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Fig. 1. Model of contacting and rubbing solids. 

layer S (i.e. a couple of friction forces and frictional 
heat supplied to the layer) [26]. 

Let us assume that friction and frictional heat 
phenomena are generated at the contact, due to ther- 
modynamical processes occuring in the contacting 
bodies and in the interfacial wear-product layer [26]. 
Thus, a relation exists between the dependent vari- 
ables and motions of the bodies A and B (xA(XA, t), 
xs(XB, t)), translalional and rotational motions of the 
layer (xs(L, t), z(L, t)), and fields of temperature in 
the bodies and the layer (0A(XA, t), 0B(Xs, t), Os(L, t)). 
The functions are given for particles XA, X8 of the 
bodies A and B, particles L of the layer S and for 
time t. General constitutive equations for friction and 
frictional heat are formulated with the aid of the fol- 
lowing functionals : 

{tAS, qf } = F~s[XA (X~, t'), OA (XA, t'), 

xs(L', t'), z(L', t'), Os(L', t') ; XA, t] (2) 

{tBs, qf} = FBs[xe(X'n, t'), 0a(X~, t'), 

xs(L', t'), ~(L', t'), Os(L', t') ; XB, t] (3) 

where 

X ~ S J -  X ~ S o  L'~S0 t' <~ t t" eR. (4) 

Subscript zero means a reference configuration of the 
bodies and the layer. 

The axioms of neighbourhood, memory and objec- 
tivity restrict the class of functions which may con- 
stitute functionals and their independent variables 
[26]. With respect ~:o the neighbourhood and memory 
axioms, the functionals may be approximated by the 
functionals of gradients with respect to spatial and 
time variables, 

{tAs, q] } = FAs[XA (XA, t), Grad XA (XA, t), 

~A (XA, 0, 0A (Xa, t), Grad 0A (X~, t), 

t)~ (XA, t), xs(L, t), Grads xs(L, t), 

is(L, t), x(L, t), Grads x(L, t), $(L, t), 

Os(L, t), Grads Os(L, t), Os(L, t) ; XA, t]. 
(5) 

The axiom of objectivity reduces the class of inde- 
pendent variables and forms of the constitutive func- 
tionals that may be used for expressing the constitutive 
equation. A relative velocity of contacting particles 
(VAs), its unit vector (VAs) and norm (VAs) satisfy the 
axiom of objectivity, 

VAS = :~A (XA, t ) -  is(L, t) (6) 

VAs 
VAs = ~ VAs = IVAsl. (7) 

A normal pressure between the body A and the layer 
S is the objective scalar 

NAs = ](n ÷ ® n+)(TAn+)l. (8) 

TA is the Cauchy stress tensor in the body A, 

T~ = TA(Grad XA, 0A ; X~). (9) 

Using equations (6)-(8), we may introduce simplified 
forms of the constitutive equations, 

tAs(X A, t) = tAs(VAs, NAS, OA, OS, Grad 0A ; XA) 

q](X~,t) =4f(VAs, N~s, OA,Os, GradOA;XA). (10) 

Two fundamental requirements have to be fulfilled 
in constitutive equations for frictional heat [26] : 

(a) The frictional heat fluxes in product with the 
unit normals are nonpositive, i.e. the frictional heat is 
supplied to the bodies, 

qf'n + ~<0 q] 'n-  ~<0. (11) 

This restriction follows from an analysis of the second 
law of thermodynamics, formulated for the system 
A u B u S. Friction, wear and frictional heat taken as 
independent processes are the most important 
assumptions of the analysis. 

(b) The following constraint of energy dissipated 
in friction process must be satisfied : 

tAS" VAs+tBs" Vns = c" og+q] • n + 

+q~ 'n -+q*+f lA  +fiB+//*. (12) 

The amount of the generated frictional heat at the 
contact is strictly connected with the work done by 
friction. 

In view of equation (12), the frictional power 
(tAs" V~s, tBs" Vns) is partitioned between the 
power of microrotations (c "~o), the frictional heat 
(q], qfs) entering into the bodies, the frictional heat 
supplied to the interfacial layer (q*), energy spent on 
wear process at the bodies (/~A,/3~) and the energy 
of wear process at the interfacial layer, e.g. crush 
process (/~*). In most cases, other forms of energy 
dissipation are negligibly small. The constraint (12) 
produces qualitative and quantitative restrictions 
on the frictional heat description. 

The equation (12) does not decide which part of the 
rub energy is converted into microrotation power of 
interfacial layer particles, heat and wear energy. 
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Experiments show that 85-95% of the friction force 
power transforms into heat [27]. 

3, CONSTITUTIVE EQUATIONS FOR 
ANISOTROPIC FRICTIONAL HEAT 

In the most simple case the constitutive relation of 
the frictional heat, equation (10), can be defined as a 
function of the normal pressure and the sliding 
velocity, 

qf  ( x . ,  t) = - w.N~ V~ (13) 

w, = WA(OA, On, Grad OA) (14) 

where, wA is a frictional heat intensity coefficient, 
being a function of the temperatures and the gradient 
of temperature. Both independent variables, i.e. pres- 
sure and velocity, do not define directional properties 
of frictional heat. Therefore, the frictional heat inten- 
sity coefficient must describe anisotropic properties of 
frictional heat. 

Let us assume that the frictional heat intensity is a 
function of a sliding direction parameter cto, i.e. 

WA = W,(~) ao~(0,27t). (15) 

~ is a measure of an oriented angle between the unit 
vector v0 of a reference direction at the contact, and 
the sliding velocity unit vector Vas. Furthermore, we 
postulate that the frictional heat intensity function, 
equation (15), and an anisotropic friction force 
coefficient function #=(~) are of the same type, 

w,(~v) ~ #=(ct~,). (16) 

The direction of the largest values of friction is sim- 
ultaneously the direction of the largest values of fric- 
tional heating. This follows from the largest values of 
friction power partitioned between heat and wear for 
that direction. For another sliding direction, the fric- 
tion force can be the lowest and the friction force 
power transformed into heat and wear can be the 
lowest as well. Tbe postulate (16) ensures an homo- 
geneous change of terms in the constraint of energy 
dissipated in the friction process, equation (12) [28]. 

A deviation in the friction force from the direction 
of sliding, and a dependence of the friction magnitude 
on the sliding direction, are main features of contacts 
with anisotropic friction [29, 30]. The friction 
coefficient /,~ and the coefficient /4, ± of the friction 
force component normal to the sliding direction can 
characterize anisotropic friction. Additionally, the 
angle fl of the friction force inclination to the sliding 
direction, and a curve drawn by the friction force 
vectors (hodograph of the friction force), completely 
define frictional anisotropy [29, 30]. 

The friction force coefficient #= is defined by 

#~ = NA~ [tas[. (17) 

The constitutive equation of the anisotropic friction 
force has the following form : 

tAS = --NAs{[Cto + C l l  COS (nl0t,) 

+Clz sin (mlctv)]VAs. • • 

+ [C,0 +Cnl cos (n,ct~) 

+ C,2 sin (mnc~.)]~(V~s® • •. @ VAs)j 
v ' - -  

2 n -  1 copies 

nl ,ml  . . . . .  n , ,m ,  = 0 , 1 , 2  . . . . .  (18) 

Cik (i = 1 . . . .  n ; k = 0, 1,2) are constant friction ten- 
sors [29, 30]. Components of the slip velocity unit 
vector are as follows : 

[VAs] = [COS Cry sin ct~] x. (19) 

The friction force equation (18), restricted to the 
second friction tensors Clk (k = 0, 1,2), has the fol- 
lowing form in the representative notation : 

t i = -NAs[C~ + C~ cos (nl ~v) + C~ sin (mr a~)]vj 

ctve(0,2~) i , j =  1,2. (20) 

Depending on the form of the friction tensors, we 
get descriptions of anisotropic friction and anisotropic 
frictional beat witb different numbers of constants and 
parameters. Using three spherical friction tensors, 

CO=#k6  'j k = 0 , 1 , 2  i , j = l , 2  (21) 

the friction force coefficient is a trigonometrical poly- 
nomial, 

/~= = #0 +/~ cos (net,,) + #2 sin (mct~). (22) 

Acconding to assumption (16), we obtain the fol- 
lowing frictional heat intensity coefficient : 

wA(ctv) = w0 + Wl cos (na~) + w2 sin (m~,). (23) 

n, m = 0, 1 ,2 , . . . - - two parameters ; w0, w~, w2--three 
constants. Taking the first friction tensor in equation 
(20) with non-zero components on the diagonal, and 
the second and the third tensors equal to zero, i.e. 

C0tl=#m)~ C~2=#(0)2 C ' ~ = C ~ = 0  i , j = l , 2  

(24) 

we get the following frictional heat intensity coefficient : 

w~ (a~) = [(Wl cos ct,)2 + (wz sin ao)2]t/2. (25) 

wl, w2--two constants. Having the first friction tensor 
spherical and the second and the third tensors equal 
to zero, i.e. 

C g = # 0  Jv C ~ = C ~ = 0  i , j =  1,2 (26) 

the frictional heat coefficient is constant, 

w(a~) = w0. (27) 

w0 is the frictional heat constant. 
Substituting the constitutive equation (13) into the 

thermodynamic requirement (11), and taking into 
account that Nas and VAS are positive, we get the 
following restriction imposed on the frictional heat 
intensity : 

WA(~) >1 0 V ~ e ( 0 , 2 x ) .  (28) 
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It restricts values of constants w0, Wl and w 2 in the 
relation (23). The constitutive relation (25) satisfies 
the inequality (28.) for arbitrary values of constants 
w~, wz e R. 

4. PROPERTII-.'S OF THE FRICTIONAL HEAT 
CONSTITUTIVE EQUATIONS 

Property 1 
The frictional heat constitutive equations (13) and 

(15) satisfy the axiom of objectivity. 
Two different observers of the sliding at the contact 

recognize the same frictional heat flux. The consti- 
tutive equations (13) and (15) have an invariant form 
with respect to arbitrary transformation from the full 
orthogonal group, if the following condition is sat- 
isfied : 

wA (~) = wA (ct~) VR ~ o (29) 

R-I = R  r d e t R = _ l  (30) 

for all ct,~(0,2r(>. 07, is a measure of an oriented 
angle between vectors Rv0 and RVAs. The orthogonal 
transformation preserves angles, and the constitutive 
equation obeys the condition of material objectivity. 

Property 2 
Different types of anisotropic frictional heat can be 

distinguished depending on a number of neutral and 
extremal value directions of frictional heat. 

For the neutral .direction, the frictional heat is inde- 
pendent of the sense of the sliding direction, i.e. 

w~(0tv) = wA(~v +~). (31) 

This sliding direction ~, we call the extremal value 
direction of frictional heat, if it gives extremal values 
of the frictional heating, i.e. minimum or maximum, 

WA(~) = min {wA(~) : ~ ~ (0, 2~5} 

o r  

wA(ct~) = max{wA(~v):~,~(O, 2n)}. (32) 

In the case ofisotropic frictional heat, all sliding direc- 
tions are neutral and extremal value directions. 

Property 3 
With the aid of symmetry groups, the following 

types of anisotropic frictional heat can be classified : 
isotropic, anisotropic, orthotropic, trigonal aniso- 
tropic, tetragonal anisotropic, centrosymmetric aniso- 
tropic and non-centrosymmetric anisotropic. 

Symmetry properties of anisotropic frictional heat 
can be defined by elements of the symmetry group 
Gw c o, i.e. by a set of transformations which map 
anisotropic frictional heat in the reference state onto 
an equivalent state. The following relation holds : 

wA(~,) = w (eta) (33) 

for all ~ ~ (0, 2~) and for all generators of the group 
Gw. ~v denotes the sliding direction parameter after 

transformation, with the aid of the symmetry 
elements. Identity (1), inversion ( - 1 ) ,  rotations 
(Rr., 7 = 2rt/n, n = 1,2 . . . . .  oo) and mirror reflections 
are generators of the symmetry groups. Definitions of 
the symmetry group elements are given in refs. [28- 
301. 

It is easy to imagine a contact with nonequivalent 
motions in positive/negative directions of sliding. In 
other words, there are differences in forward and 
backward sliding. This noncentrosymmetry deals with 
differences in surface or material behaviour of con- 
tacts when sliding in two opposite directions. 

Property 4 
If the anisotropic frictional heat has a finite number 

of neutral directions, then mirror reflections are with 
respect to neutral directions (J.,). If there is a finite 
number of extremal value directions and all sliding 
directions are neutral, then mirror reflections are with 
respect to the extremal value directions (Js,). 

Other properties of frictional heat are similar to 
those for anisotropic wear, see ref. [28]. 

In Table 1 types of anisotropic frictional heat are 
listed by name with transformations defining their 
symmetry properties. The full orthogonal group is 
the group of symmetry of isotropic frictional heat. 
Centrosymmetric anisotropic frictional heat has only 
a trivial two-element group of symmetry. The sym- 
metry group of orthotropic frictional heat has 
the trivial subgroup and the subgroup of mirror 
reflections with respect to planes orthogonal to 
extremal value directions of frictional heat. Non- 
centrosymmetric anisotropic frictional heat does not 
have the inversion -- 1. Trigonal anisotropy is defined 
by the identity of a three-fold rotation axis and three 
mirror reflections with respect to neutral directions. 
Tetragonal anisotropic frictional heat has the identity 
of a four-fold rotation axis and four mirror reflections 
with respect to extremal value directions. The presence 
of symmetries reduces the number of unknown 
coefficients required to describe the property, and the 
number of necessary experimental measurements can 
be reduced. Restrictions imposed on the constants in 
Table 1 follow from the thermodynamic requirements, 
equations (11) and (28). 

5. COMPOSITIONS OF TWO DIFFERENT 
FRICTIONAL HEAT ANISOTROPIES 

Thus far, we have investigated the contact of two 
surfaces with anisotropic and isotropic frictional heat 
properties, or the contact of a surface with anisotropic 
frictional heat features and a surface of a non- 
conducting heat body. Next, we study frictional heat 
at the contact of surfaces with known, different, aniso- 
tropic frictional heat properties. 

Frictional heat intensity functions of single surfaces 
can be determined experimentally by sliding a test, 
third body with isotropic frictional properties. We 
assume reference directions (v0A,v0 a) on both con- 
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Table 1. Types of anisotropic frictional heat 

Type of frictional Elements of the 
heat symmetry group Constitutive equation 

Independent 
constants and 

parameters 
Restrictions on the 

constants 

Isotropic o 

Orthotropic +_ l, J~,, J,: 

Centrosymmetric + 1 
anisotropic 

Non-centrosymmetric + 1 
anisotropic + 1, J., 

2/3n + I , R .  , 
Trigonal anisotropic j~,, j.~, j.~ 

Tetragonal anisotropic + 1, R. ~/2, J~,, J~,, J~,  J~, 

W0 

[(wl cos ~)2 + (w2 sin 7,)2],/~ 
w0+ wl cos (2~) 

w0 + wl cos (2~v) + w2 sin (2~) 

w 0 +  w~ cos  cry+ w2 s in  ~,, 

w0q- w I cos  ~v 

w0+ wl cos (3~,) 

w0 + wl cos (4~,) 

W0 

WI, W2 

W0~ WI 
n = 2  

W0, WI~ W2 
n = m = 2  

W0~ Wb W2 

n = m = l  
W0~ Wl 

n = l  

W 0, WI 

n = 3  

W0~ WI 

n = 4  

w o ~ R  + 

wl, w 2 ~ R  
w o ~ R  + ; w l ~ R  

Wo >>- Iwll 

WoE R + ; wl,  w2c~ R 
W 0 ~ - -  W I COS 0~ v - -  

W2 s in  ~ 

w o ~ R + ; w l ~ R  
w0 /> Iw~l 

tacting surfaces. Then the following relation holds 
between the sliding direction parameters on surfaces 
A and B : 

ef = e~ - ~0 (34) 

where q~ is an angle of relative position of the con- 
tacting surfaces. 

It is postulated that for a given normal pressure 
(NAn) and a relative velocity (VAs) at the contact of 
two surfaces, a resultant frictional heat flux is equal 
to the product of a "composition coefficient" (x) and 
the sum of frictional heat fluxes obtained for each 
surface taken separately, i.e. 

q] ,  = x(qr A +q~). (35) 

Heat flux components q] and qf correspond to fric- 
tional heat when sliding the test body along the con- 
tacting surfaces. The composition coefficient is an 
experimental quantity and its value does not affect the 
description of frictional heat anisotropy. 

The resultant frictional heat flux can be defined by 

q ] ,  = - WAn(O~A)NA, VAn. (36) 

Substituting equation (36) into equation (35), we 
obtain the following resultant frictional heat intensity 
defined with respect to the surface A : 

WA,(Ot~) = X[WA ( ~ )  + Wn(Ct~ --  ~o)l (37) 

where WA and wn are frictional heat intensities of sur- 
faces A and B, respectively. 

The symmetry group of the resultant frictional heat 
at the contact of two surfaces with different frictional 
heat properties is equal to an intersection (a common 
part) of symmetry groups for the surfaces A and B, 
i.e. 

a ~  n = 6~w • Cw ~ (38) 

where G~ and G~ describe symmetry features of the 
frictional heat for surfaces A and B, respectively. 

Examples of composition of frictional heat aniso- 
tropics can be easily given, using formula (37), Let 
the frictional heat properties of two surfaces be 
described in terms of an anisotropic heat coefficient 
WA(~t~) and an isotropic heat coefficient wA = const. 
Heat properties at this contact are defined in terms of 
the anisotropic frictional heat intensity 

wA~(c~) = x[wA (eva) + ws]. (39) 

It does not depend on the relative position of the 
surfaces. The intersection of the symmetry groups is 
given by 

{+1} c~ {o} = {+1}. (40) 

When both surfaces have isotropic heat properties 
(wA, wB = const.), then heat features of the contact are 
described by the isotropic heat intensity coefficient, 

WAn(C~) = ~C(WA + WB) = const. (41) 

The common part of two full orthogonal groups is the 
full orthogonal group. A contact between a surface 
with isotropic frictional heat properties (wA = const.) 
and a surface with orthotropic heat features denoted 
by the heat coefficient Wn(Ctn~) has orthotropic proper- 
ties, depending on the angle ~0 of the relative positions 
of the contacting surfaces, 

wAn(o~) = r[WA + Wn(O~ A --  ¢P)]. (42) 

This frictional heat orthotropy is defined by the fol- 
lowing intersection of the symmetry groups : 
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Table 2. Compositions of two different frictional heat anisotropies 

569 

Surface A Surface B Composition result 

Isotropic Isotropic 
Orthotropic 
Centrosymmetric anisotropic 
Non-centrosymmetric anisotropic 
Trigonal anisotropic 
Tetragonal anisotropic 

Centrosymmetric 
anisotropic 

Trigonal 
anisotropic 

Isotropic 
Orthotropic 
Centrosymmetric anisotropic 
Non-centrosymmetric anisotropic 
Trigonal anisotropic 
Tetragonal anisotropic 

Isotropic 
Orthotropic 
Centrosymmetric anisotropic 
Non-centrosymmetric anisotropic 
Trigonal anisotropic 
Tetragonal anisotropic 

Isotropic 
Orthotropic depends on go 
Centrosymmetric anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 
Trigonal anisotropic depends on go 
Tetragonal anisotropic depends on go 

Centrosymmetric anisotropic 
Centrosymmetri¢ anisotropic depends on ~o 
Centrosymmetric anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 
Centrosymmetric anisotropic depends on go 

Trigonal anisotropic 
Non-centrosymmetric anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 
Trigonal anisotropic depends on go 
Non-centrosymmetric anisotropic depends on go 

{o}n{q-l ,J ,~,J ,~} = {+l,J+~,J,2 }. (43) 

In Table 2 are given selected examples of the com- 
position of frictional heat anisotropies of the surfaces 
A and B. If  the composition result depends on the 
angle ~0 of the relative positions of the surfaces, then 
this fact is marked in Table 2 with the aid of the 
comment "depends on tp". The composition result 
does not depend on the angle q3 if the frictional heat 
symmetry group of the surface B contains rotations 
about the normal to the contact (W., ? e (0, 2~)). This 
is the case of isotropic frictional heat of surface B. 

6. ILLUSTRATIVE EXAMPLES OF ANISOTROPIC 
FRICTIONAL HEAT 

It is important to consider the directional depen- 
dence of frictional heat, together with anisotropic fric- 
tion. We study friction and frictional heat properties 
of a material poir+Lt (a pin) sliding in a plane (a disc) 
with isotropic and orthotropic friction and frictional 
heat. 

The motion has an initial velocity oriented to the 
reference system by an angle ~0. The equation of the 
sliding motion of  the pin, 

m0 i~ = tan (44) 

ro = O 
t = 0  f0 5 0  (45) 

[~0] == [~0 cos ~0 e0 sin ~0] T (46) 

is solved by mean:s of the Runge-Kutta  fourth order 
method. Figure 3 presents trajectories of the retarded 
motion of  the material point in a plane, with the 

orthotropic friction illustrated by Fig. 2. Orthotropic 
friction tensor components are as follows : 

Co ~' =0.13 C~ z = C ~ '  = - 0 . 0 3  Co 22=0.08. 

The length of the trajectory depends on the frictional 
resistance. Intervals between points on the trajectories 
shown in Fig. 3 correspond to constant time intervals 
(0,2 s). For  isotropic friction, rectilinear trajectories 
coincide with the initial sliding velocities. From the 
motion equation solutions we obtain : sliding direction 
parameter (~v), slip velocity magnitude (VAn = I~l) 
and time of sliding (t). 

Frictional heat is generated at the contact between 
the pin and the plane. The heat conduction equation 
for a one-dimensional continuum, including heat 
transfer into the surrounding area, has the following 
form : 

~3T 
= K T , ~ , - b ( T -  To) 

T =  T(z , t )  z e ( O ,  oo). (47) 

Initial and boundary conditions of the heat con- 
duction problem are as follows : 

T ( z , t  = O) = To 

k c3T(z = O, t) 
~ z  - qf 

li+rno~ T(z ,  t) = To (48) 

where 

k 
g = - -  (49) 

cp 
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Fig. 2. Illustration of the orthotropic friction : (a) friction coefficient/~ ; (b) friction coefficient #,; (c) 
deviation angle of the friction force from the sliding direction; (d) friction force hodograph. 

hg 
b = - -  (50) cpF" 

The steel pin is characterized by the following data:  
mass density p = 7.7x 103 kg m -3, specific heat 
c = 0.46x 103 N m kg -1 K -1, thermal conductivity 
k = 45.4 N s ~ K -~, thermal diffusivity coefficient 
K =  12.5x10 -6 m z s -1, pin cross-section area 
F = 1 x 10 4 m 2, pin circumference g = 4 x l0 -2 m. 
With the aid of the Nusselt number  formula, the heat 
transfer coefficient can be determined. Its value 
depends on the sliding velocity, and an average value 
is equal to h = 32.9 N m -~ s -~ K - L  

The heat conduction problem, equations (47) and 
(48), can be reduced to a simple form by substitution 
of the following : 

T- To = oe -b' (51) 

where o = v(z, t). A solution of the reduced problem 
is well known, see ref. [31]. Then the solution of the 
heat conduction equations (47), (48) is given by 

+ q-f /K f' l-~-e-(b'+(=2/4x~)) dz. (52) 

In the examples, it is assumed that all friction power 
goes into heat, and all generated heat flows into the 
pin (the sliding plane is an isolator). Then the con- 
straint of  energy dissipated (12) reduces to the fol- 
lowing relation : 

- (cos 3)t~BVA~ = q'~. (53) 

By substitution of the frictional heat flux and the 
friction force defined by equations (13) and (17) into 
equation (53), we obtain the quantitative restriction 
on the frictional heat intensity coefficient, 

wA(~,) = #,(~v) cos ft. (54) 

In the examples, the frictional heat intensity function 
is the trigonometrical polynomial, equation (23). The 
anisotropic frictional heat flux vector qf is a function 
of the time of sliding. We assume that q] is constant  
for every time step At, i.e. for t e  ( tl, 6+ 1 >, where 

ti+ 1 = t i + A t .  (55) 

We apply the same time step At in numerical inte- 
gration of the mot ion equation (44) and in numerical 
calculations of the integral (47). 

Calculated contact temperatures (i.e. T(z = O,t) 
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intensity (w0 = 0.105; wj = 0.039; n = 2). The ortho- 
tropic friction induces different sliding trajectories and 
sliding times. Thus, contact temperatures depend on 
the sliding direction, in spite of the frictional heat 
intensity being isotropic (Fig. 6). If  both phenomena 
(friction and frictional heat) are orthotropic, it mark- 
edly changes the contact temperatures (Fig. 7). For 
all sliding directions the same kinetic energy is dis- 
sipated in friction and converted into the frictional 
heat. 

Since the pin motion is the retarded motion, then 
the amount of generated heat decreases if the sliding 
time increases. The contact temperature plots cor- 
respond to the real time of sliding (from the beginning 
to the end of sliding). We do not consider cooling 
effects. 

Figure 8 presents temperature profiles in the pin (z- 
distance from the contact) at the time of sliding t = 1.4 
s, for different sliding directions ~0 and under con- 
ditions illustrated by Fig. 7. Heat is conducted into 
surroundings; the highest temperature occurs at the 
contact surface. 

r 20. #2,5. 65.87,5. lfo. 132.5.155 ° t77,5. 
oto 200 ° 222,5.  2#5.  287 ,5 .  2 9 0 .  3t2,5 = 335° 357~5 ° 

Fig. 3. Motion of a material point in a plane with orthotropic 
friction. 

depend on the type of  anisotropic friction and on 
the type of anisotropic frictional heat. Figures 4-7 
illustrate frictional heat intensity coefficient w(~v) with 
respect to polar coordinates, and the contact tem- 
peratures as sliding time functions (given for selected 
sliding directions ~o). Graphical representations of the 
heat intensity functions in Figs. 4-7 are equal to the 
isotropic friction coefficient function or are similar to 
the orthotropic fi'iction coefficient function, respec- 
tively [the influence of cos fl in equation (54) is neglec- 
ted]. 

Figures 4 and 5 present the contact temperature 
for the pin sliding in a plane with isotropic friction 
properties ~= = 0.1 ; ~0 = 2 m s-l). Two different fric- 
tional heat intensity functions are taken into account : 
isotropic (w0 = 0.1), Fig. 4, and orthotropic 
(w0 = 0.105; w~ --: 0.039; n = 2), Fig. 5. Motion tra- 
jectories in the isotropic friction plane are segments 
of line of the sarae length for all sliding directions. 
Therefore, the contact temperature does not depend 
on the sliding direction for the isotropic frictional heat 
intensity function, Fig. 4. It depends on the sliding 
direction ct0, if the frictional heat intensity is ortho- 
tropic, Fig. 5. 

Results ploted in Figs. 6 and 7 show the contact 
temperatures for the pin sliding in the plane with 
orthotropic friction (see Figs. 2 and 3). Figure 6 illus- 
trates the case of isotropic frictional heat intensity 
function (w0 = 0.1 ) and Fig. 7 shows orthotropic heat 

7. CONCLUSIONS 

(a) With the aid of  a thermodynamical approach 
and a postulate that anisotropic friction and frictional 
heat have common properties, we proposed a method 
for deriving constitutive relations for anisotropic fric- 
tional heat. 

(b) Variables and forms of the constitutive 
relations for frictional heat are restricted by the axiom 
of objectivity, the second law of thermodynamics, and 
the constraint of energy dissipated in the friction 
process. 

(c) Constitutive equations for anisotropic fric- 
tional heat enable prediction of the behaviour of a 
contact, that can be confirmed by experimental obser- 
vations. Mathematical properties of the constitutive 
equations define a range of possible applications of 
the anisotropic frictional heat models in investigations 
of theoretical and practical problems of technology. 

Contact surface temperatures are important in 
machining processes (boring, grinding, polishing, cut- 
ting), metal forming, frictional welding, electrical con- 
tacts, etc. High working temperatures characterize 
automative, railway and aircraft brakes. The high sur- 
face temperature occurs in turbine blade tip/shroud 
interactions due to very high sliding speed [17]. The 
contact temperature can strongly affect the friction, 
the rate of wear and surface damage processes. 

Developments in composite and fiber reinforced 
materials provide the motivation for research in aniso- 
tropic phenomena of friction, wear, and frictional 
heat. Composite materials are widely used, e.g. in 
brakes [10]. The recognition and understanding of 
anisotropic contact phenomena represent one of the 
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Fig. 6. Isotropic frictional heat intensity function and the contact temperature (z = 0) of a steel pin for 
sliding in different directions a0 in a plane with orthotropic friction (see Fig. 2). 
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Fig. 8. Temperature profiles in a pin for sliding in different directions ct0 at constant sliding time t = 1.4 s 
and under conditions illustrated by Fig. 7. 

major  problems of  forming and  cut t ing processes. 
Fr ic t ional  heat  anisot ropy can  play an  impor t an t  role 
in engineering appl icat ions of  monocrystals ,  e.g. used 
in technological  operat ions.  
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